Concolic Testing of Functional Logic Programs
Jan Rasmus Tikovsky
jrt@informatik.uni-kiel.de

Kiel University

WFLP 2017

Program Testing

Check correctness of programs via testing
= But writing test cases manually is time consuming and tedious...

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 1/15

Program Testing

Check correctness of programs via testing
= But writing test cases manually is time consuming and tedious...

(Automated) Testing Tools and Libraries:

Random testing
Property-based testing
Symbolic Execution

Concolic Execution

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 1/15

Concolic Execution

Goal: Find enough test cases for full program coverage

Basic Idea: Concrete Execution drives Symbolic Execution

Execute program with concrete input data
Collect symbolic information during concrete execution

Information corresponds to constraints along one execution path

Negate and solve constraints systematically to search for alternative
execution paths

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 2/15

Concolic Execution Example

nthElem [] _ = Nothing
nthElem (x : xs) n | n == 0 = Just x
| n > 0 = nthElem xs (n - 1)

Example (Initial Call: nthElem [False] 0)
Concrete Execution:
@ selects second program rule
@ yields the result Just False
Symbolic Execution:
@ starts with symbolic function call nthElem yss ns
@ constrains them whenever a branch decision is made
Path Constraints:

@ Y¥Ss=Xs:xSsAns=0

e Compute input data for alternative execution paths (nthElem [] 0)

V.

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 3/15

Curry - A Functional Logic Programming Language

@ Haskell-like syntax

@ Higher order functions, non-strict semantics, lazy evaluation

@ Non-determinism, free variables

Curry

not True = False
not False = True

map _ [] =0

map £ (x : xs) = f x : map f xs
insertND x [] = [x]
insertND x (y : ys) = x : y : ys

insertND x (y : ys)

y : insertND x ys

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Example Calls

> map not [True, False]
[False, True]

> insertND 42 [1, 2]
[42, 1, 2]
[1, 42, 2]
[1, 2, 42]

> not x where x free
{x = False} True
{x = True} False

WEFLP 2017

4/15

Concolic Execution Scheme of Curry

Curry Concolic Testing Interpreter (ccti)

Input Program P with initial call of the function to be tested e

Output Set of test cases, i.e. input data and corresponding results

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 5/ 15

Translation of Curry to FlatCurry

Curry
nthElem [] _ = Nothing
nthElem (x : xs) n | n == 0 = Just x
| n > 0 = nthElem xs (n - 1)
insertND x [] = [x]
insertND x (y : ys) =x : y : ys

insertND x (y : ys) =y : insertND x ys

FlatCurry

nthElem xs n = case xs of
[-> Nothing
y:ys -> case n == 0 of
True -> Just y
False -> case n > 0 of True -> nthElem ys (n-1)
False -> failed

insertND x xs = case xs of
0o - [
y:ys -=> (x : y : ys) ? (y : insertND x ys)

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017

6/15

Translation of Curry to FlatCurry

Curry
nthElem [] _ = Nothing
nthElem (x : xs) n | n == 0 = Just x
| n > 0 = nthElem xs (n - 1)
insertND x [] = [x]
insertND x (y : ys) =x : y : ys

insertND x (y : ys) =y : insertND x ys

FlatCurry

nthElem xs n = casel xs of
[-> Nothing
y:ys -> case2 n == 0 of
True -> Just y
False -> case3 n > 0 of True -> nthElem ys (n-1)
False -> failed

insertND x xs = case4 xs of

0 > [xl

y:ys > (x : y : ys) ? (y : insertND x ys)
J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 6 /15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel xs of
] -> Nothing
y:ys -> case2 n == 0 of
True -> Just y
False -> case3 n > 0 of True -> nthElem ys (n-1)
False -> failed

Concrete Execution Symbolic Trace
nthElem [False] 0

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 7/ 15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel xs of
] -> Nothing
y:ys -> case2 n == 0 of
True -> Just y
False -> case3 n > 0 of True -> nthElem ys (n-1)
False -> failed

Concrete Execution Symbolic Trace
nthElem [False] 0 [1

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 7/ 15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel xs of
] -> Nothing
y:ys -> case2 n == 0 of
True -> Just y
False -> case3 n > 0 of True -> nthElem ys (n-1)
False -> failed

Concrete Execution Symbolic Trace
nthElem [False] 0 [1
=" casel [False] of ... | [

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 7/ 15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel xs of
] -> Nothing
y:ys -> case2 n == 0 of
True -> Just y
False -> case3 n > 0 of True -> nthElem ys (n-1)
False -> failed

Concrete Execution Symbolic Trace
nthElem [False] 0 [1

=" casel [False] of ... | [

=" case2 0 == 0 of ... [(casel, 2/2, xss, (:))]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 7/ 15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel

] -> Nothing

y:ys -> case2 n ==

True -> Just y

False -> case3 n

xs of

> 0 of True -> nthElem ys (n-1)

False -> failed

Concrete Execution

Symbolic Trace

nthElem [False] 0 [1

=" casel [False] of ... | [

=" case2 0 == 0 of ... [(casel, 2/2, xss, (:))]

=% Just False [(casel, 2/2, xs., (:)), (case2, 1/2,)]

WEFLP 2017

7 /15

Trace Symbolic Information in Deterministic Programs

nthElem xs n = casel xs of

] -> Nothing

y:ys -> case2 n == 0 of

True -> Just y

False -> case3 n > 0 of True -> nthElem ys (n-1)

False -> failed

Concrete Execution
nthElem [False] O

=" casel [False] of ...

=" case2 0 == 0 of ...
=" Just False

Symbolic Trace

[]

[]

[(casel, 2/2, xss, (:))]

[(casel, 2/2, xss, (:)), (case2, 1/2,

)]

@ Program branches: case expressions and non-det. choices

@ Trace symbolic information: case ids, branch numbers, symbolic
variables, matching constructors

@ Comparison operations on numerical literals:

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017

7 /15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = case4 xs of [] -> [x]
y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = case4 xs of [] -> [x]
y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]

1

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]
=" case4 [False] of ...

1
1

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = case4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]
=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])

(]
[]
[(cased4, 2/2, xs., (:))]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]
=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])

[
[
[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]
=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])
=* {[True, Falsel}

(]
(]

[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]
{[(case4, 2/2, xss, (:))1}

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]
=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])
=* {[True, Falsel} u (False : case4 [] of ...)

1
[
[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]
{[(case4d, 2/2, xs:, (:))]1} U [(cased, 2/2, xs., (:))]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]

y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]

=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])
=* {[True, Falsel} u (False : case4 [] of ...)

=* {[True, Falsel} u {[False, Truel}

[

[

[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]

{[(case4d, 2/2, xs:, (:))]1} U [(cased, 2/2, xs., (:))]
{[(case4,2/2,xs:,(:))]1} U [(cased,2/2,xs.,(:)), (cased,1/2,ys:,[1)]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]
y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]

=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])
=* {[True, Falsel} u (False : case4 [] of ...)

=* {[True, Falsel} u {[False, Truel}

=* {[True, False], [False, Truel}

[

[

[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]

{[(case4, 2/2, xs., (:))]1} u [(cased, 2/2, xs., (:))]
{[(case4,2/2,xs:,(:))]1} U [(cased,2/2,xs.,(:)), (cased,1/2,ys:,[1)]
{[(case4,2/2,xs.,(:))], [(cased,2/2,xs,,(:)), (cased,1/2,ys;,[1)1}

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8/ 15

Trace Symbolic Information in Non-Deterministic Programs

insertND x xs = cased4 xs of [] -> [x]
y:iys -> (x : y : ys) 7 (y : insertND x ys)

insertND True [False]

=" case4 [False] of ...

=" (True : False : []) ? (False : insertND True [])
=* {[True, Falsel} u (False : case4 [] of ...)

=* {[True, Falsel} u {[False, Truel}

=* {[True, False], [False, Truel}

[

[

[(cased, 2/2, xs.:, (:))] ? [(cased, 2/2, xss, (:))]

{[(case4, 2/2, xs., (:))]1} u [(cased, 2/2, xs., (:))]
{[(case4,2/2,xs:,(:))]1} U [(cased,2/2,xs.,(:)), (cased,1/2,ys:,[1)]
{[(case4,2/2,xs.,(:))], [(cased,2/2,xs,,(:)), (cased,1/2,ys;,[1)1}

@ Encapsulate non-determinism = multisets of results and traces

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 8 /15

Semantics for Concolic Execution

o Evaluate an expression e w.r.t. a heap I' and an incoming symbolic
trace T to a value v, an updated heap A and an extended trace T

ML T:el] AT:v
@ Heap: Map variables to expressions or mark them as free
LA, © € Heap=V — {free} w Exp
@ Symbolic Trace: List of symbolic information for selected branches

T,T,X € Trace

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 9 /15

Semantics for Concolic Execution (Excerpt)

Extension of FlatCurry semantics [Hanus, Peemdller - WFLP 2014]

Value I :v|l :v wherev=c(xX,) orveV with [[v]=free
VarExp reld v where e ¢ {free}
Mxw~e] x| Alx—v] :v

N el :v

Or where j € {1,2}
N "e?7elA
r :xlAa :cim) A o(e) O v
[:casegxof{pr—oe O :v
Select

where p; = c(X,),0 = {X, = ¥n}

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 10 / 15

Semantics for Concolic Execution (Excerpt)

Extension of FlatCurry semantics [Hanus, Peemdller - WFLP 2014]

Value ILT:v |, T:v wherev=c(xX,) orveV with [[v]=free

VarExp [T:edAT:v where e ¢ {free}
Mxee], T:x | Alx—v],T:v

M T:e | AT

Or where j € {1,2}
M T:e17e | AT v
raT:XUAaT:C(W) A7¢:U(e/)U67X:V
I, 7T:casejgxof{pr—>er | ©,X:v
Select

where p; = c(X,),0 = {X, = ¥n}, x. fresh symbolic variable,
® = T++[(id, i/k, x5,)]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 10 / 15

Search Strategy of ccti

@ Symbolic traces — paths through symbolic execution tree

@ Single trace entry — node of symbolic execution tree

Search Algorithm
@ Update symbolic execution tree with traces / mark branches as visited

@ Select node closest to the root with unvisited branches
© Negate path constraint of that node

@ Try to solve constraints along path from root to selected node

» sat: Compute new input data from model
» unsat: Mark branches as visited and continue with @

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 11 / 15

Selection and Solving of Path Constraints

Symbolic Trace for nthElem [False] 0
[(casel, 2/2, xss, (:)), (case2, 1/2,)]

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Selection and Solving of Path Constraints

Symbolic Trace for nthElem [False] 0

[(casel, 2/2, xss, (:)), (case2, 1/2,)]

Example (Symbolic Execution Tree for nthElem)

casel Xs, _

case2

Just ys

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs

Selection and Solving of Path Constraints

Symbolic Trace for nthElem [False] 0
[(casel, 2/2, xss, (:)), (case2, 1/2,)]

Example (Symbolic Execution Tree for nthElem)

casel Xs,

case?2

Just . \

@ Path constraint: xss =ys:yss Ans=0

@ Search Strategy: Select node casel for negation
@ Apply SMT solver to modified constraints: Vys, yss : =(xss = ys : ¥Ss)

@ Receive input data for alternative execution path: nthElem [] 0

J. R. Tikovsky (Kiel University)

Concolic Testing of FLPs WEFLP 2017 12 /15

Application of ccti

Test cases found for nthElem

nthElem [False] 0 -=- Just False
nthElem [] 0 -=- Nothing
nthElem [False] 1 -=- Nothing

failing $ nthElem [False] (-1)

Tested Function Initial Arguments Cases ccti Tests Minimum Tests® Full Coverage

nthElem [False], O 3 4 3 yes
insertND True, [] 1 2 2 yes
addNat IHi, IHi 4 9 6 yes
perm [Falsel 2 1 1 no
semRE Lit A 2 3 1 no

Number of test cases sufficient for full program coverage
J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 13 /15

Current Limitations of ccti

Curry
insertND x xs = case4 xs of [] -> [x]

yiys -=> (x : y : ys) 7 (y : insertND x ys)
perm xs = caseb xs of [] -> []

y:ys -> insertND y (perm ys)

For perm [False] ccti finds only single test case

No coverage of second branch of case4

Problem: Second branch of case5 is already covered by top-level call
= Not considered for recursive call of perm
= insertND is never called with non-empty list

Solution: Apply alternative coverage criterion for search

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 14 / 15

Conclusion

ccti - concolic testing of functional logic programs
Extension of FlatCurry semantics to trace symbolic information
Application of SMT solver for solving of path constraints

First evaluation: applicable for test case generation

Global branch coverage insufficient for some examples

Future Work

@ Implementation of alternative strategies and code coverage criteria
e Further evaluation of ccti:

» More complex programs
» Comparison with narrowing-based test case generation (CurryCheck)

J. R. Tikovsky (Kiel University) Concolic Testing of FLPs WEFLP 2017 15 / 15

	Introduction Motivation

