
plspec
A Type System for Prolog

Philipp Körner and Sebastian Krings

Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

September 20, 2017



plspec
A Type System for Prolog

A Specification Language for Prolog Data

Philipp Körner and Sebastian Krings

Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

September 20, 2017



What This is about

• Documentation
• Change and growth (see “Spec-ulation” by Rich Hickey)

• A rant

3



What This is about

• Documentation
• Change and growth (see “Spec-ulation” by Rich Hickey)
• A rant

3



Bold Claim

Non-ISO Prolog is broken.

4



Documentation of member/2 in SWI

member(?Elem, ?List)
True if Elem is a member of List.

5



?- member(1, [1,2,3]).
true .

?- member(0, [1,2,3]).
false.

?- member(X, [1,2,3]).
X = 1 ;
X = 2 ;
X = 3.

6



What if the second argument is not a list?
Reminder:

• A list terminator (e.g., []) is a list.
• .(X, L) (or ’[|]’(X, L)) is a list, iff L is a list.

7



?- member(a, a).
false.

?- is_list([a|b]).
false.

?- member(a, [a|b]).
true.

8



?- member(a, a).
false.

?- is_list([a|b]).
false.

?- member(a, [a|b]).
true.

8



?- member(a, a).
false.

?- is_list([a|b]).
false.

?- member(a, [a|b]).
true.

8



Documentation of member/2, 2nd attempt

member(?Elem, ?List)
True if List is a proper list and Elem is a member of List.
False if List is a proper list and Elem is not a member of List.
Arguments might not be instantiated.
Behaviour is undefined if List is not a proper list.

9



Possible Behaviour

• success and solution (yes + bindings)
• failure without solution (no)
• exception (ka-boom!)

• inifinite loop

10



Possible Behaviour

• success and solution (yes + bindings)
• failure without solution (no)
• exception (ka-boom!)
• inifinite loop

10



Real-World Example

• I worked on a version of a CSP 1 interpreter
• evaluate the output of a channel
• code for this already exists!

1Communicating Sequential Processes
11



eval_chan_out(Vals,ChanExpr,
EvaldValueList,Chan,Span,WF) :-

evaluate_dot_tuple([ChanExpr|Vals],Res,WF),
(Res = tuple([Ch|VL])

-> (EvaldValueList,Chan) = (VL,Ch)
% an actual comment, not helpful though
; add_error_with_span(...),fail

),
(is_a_channel_name(Chan) -> true

; add_error_with_span(...) ).

12



What are my options here?

• sigh loudly and read more code
• go ask my boss who will go read more code
• flip a table and go home

13



What are my options here?

• sigh loudly and read more code

• go ask my boss who will go read more code
• flip a table and go home

13



What are my options here?

• sigh loudly and read more code
• go ask my boss

who will go read more code
• flip a table and go home

13



What are my options here?

• sigh loudly and read more code
• go ask my boss who will go read more code

• flip a table and go home

13



What are my options here?

• sigh loudly and read more code
• go ask my boss who will go read more code
• flip a table and go home

13



ISO Prolog . . .

. . . usually raises errors if an argument is the wrong type.
Why can’t we have nice things as well?

When did no become sexier than an error?
Even an error is not useful enough.

14



ISO Prolog . . .

. . . usually raises errors if an argument is the wrong type.
Why can’t we have nice things as well?
When did no become sexier than an error?

Even an error is not useful enough.

14



ISO Prolog . . .

. . . usually raises errors if an argument is the wrong type.
Why can’t we have nice things as well?
When did no become sexier than an error?
Even an error is not useful enough.

14



Rationale

• Documentation is not enough.
• Documentation gets outdated quickly.
• Documentation should be (somewhat) enforcable.

• can we describe (this part of) our program with Prolog
data?

15



Rationale

• Documentation is not enough.
• Documentation gets outdated quickly.
• Documentation should be (somewhat) enforcable.
• can we describe (this part of) our program with Prolog

data?

15



Introducing. . .

plspec

https://www.github.com/wysiib/plspec/

16

https://www.github.com/wysiib/plspec/


Related Work (excerpt)

• clojure.spec
• design by contract (Racket, . . . )
• Mercury
• Erlang’s type specification language
• typed Prolog

17



plspec’s Built-ins

• any

• var, nonvar, ground
• int, float, number
• atom, atomic
• compound(X), list(X), tuple(X) 2

• one_of(X), and(X)

2fixed-size list
18



Describing Data

:- defspec(tree(X),
one_of([compound(node(tree(X),

X,
tree(X))),

atom(empty)])).

tree(int):
empty
node(empty, 1, empty)
tree(empty, 1, empty)
tree(empty, empty, empty)

19



Describing Data

:- defspec(tree(X),
one_of([compound(node(tree(X),

X,
tree(X))),

atom(empty)])).

tree(int):
empty
node(empty, 1, empty)
tree(empty, 1, empty)
tree(empty, empty, empty)

19



Dependent Types

even_pred(X) :-
0 is X mod 2.

:- defspec_pred(even, even_pred).

even:
-2
-1
0
1

20



Dependent Types

even_pred(X) :-
0 is X mod 2.

:- defspec_pred(even, even_pred).

even:
-2
-1
0
1

20



Kinds of Runtime Checks

:- spec_pre(my_member/2,
[any, one_of([var, list(any)])]).

:- spec_invariant(my_member/2,
[any, list(any)]).

:- spec_post(my_member/2,
[any, any],
[any, list(any)]).

21



Use Case: Runtime Checks

?- my_member(1, a).

! plspec: no precondition was matched
in my_member/2

! plspec: specified preconditions were:
[[any,one_of([var,list(any)])]]

! plspec: however, none of these is matched by:
[1,a]

! plspec_error

22



Invariants

:- spec_invariant(inv_violator/1, [atomic]).
inv_violator(X) :-

X = [1], X == [2].
inv_violator(a).

?- inv_violator(a).
true.

?- inv_violator(_).
! plspec: invariant violated in inv_violator/1
! plspec: the spec was: atomic
! plspec: however, the value was bound to: [1]
ERROR: Unhandled exception: plspec_error

23



Empirical Evaluation

• performance impact of instrumentation not too bad, but
• do not annotate recursive predicates
• instead: wrap predicate, use invariants
• do not ship enabled specs

24



Empirical Evaluation

• used in parts of PROB
• able to expose known errors in old revisions
• exposed incorrect test cases

25



Features (for now)

required offered
- documentation

term expansion run-time checks
co-routines invariant checks

26



Future Work

required offered
term expansion, co-routining inference of specs

- generation of conforming data
- test-case generation

term expansion, co-routining annotation for partial evaluation
- synthesis of programs

term expansion gradual typing
term expansion, ? determinacy checker

27



Summary

• I’m a bad programmer and cannot cope with lots of code
• Goal: improve maintainability of Prolog programs
• optional typing can be shipped as a library
• maybe you will find it helpful

28



29


